
Indigo Protocol
Audit Report - Revision 1

MLabs Audit Team

November 7, 2022 (Revised December 9, 2022)

1

CONTENTS Indigo Protocol Audit Report - Revision 1

Contents
Revision Notes 4

Revision 1 - 2022-12-09 . 4

Index 5

1. Disclaimer 9

2. Background 9
2.1. Scope . 9
2.2. Parties Involved in Audit Process . 9
2.3. Methodology . 9

2.3.1. Information . 9
2.3.2. Audit Timeline . 10
2.3.3. Metrics . 11

3. Audit 11
3.1. Executive Summary . 11

3.1.1. Code Coverage . 11
3.2. Vulnerabilities . 12

3.2.1. Incorrect validation of CDP liquidation transactions allows burning arbitrary amount of
iAsset from the Stability Pool . 12

3.2.2. Incorrect validation of poll shard merging allows stealing of poll tokens 13
3.2.3. Incorrect validation of Proposal execution allows stealing of the Upgrade Token 14
3.2.4. Missing check in the CDP validator to ensure that inputs from other scripts are spent with

the correct redeemer is unsafe . 15
3.2.5. Lack of restriction on collector value may halt distribution of protocol fees 15
3.2.6. Creation of duplicate iAssets results in invalid protocol state 16
3.2.7. Missing check in the Poll validator to ensure that inputs from other scripts are spent with

the correct redeemer is unsafe . 17
3.2.8. Contention and low-cost transactions in the Staking Manager may cause the protocol to stall 18
3.2.9. Potential Governance Power Misuse . 19
3.2.10. No lower bound for CDP positions can dis-incentivize CDP liquidation 19
3.2.11. Locked Ada values in multiple protocol UTxOs . 20
3.2.12. Contention in the Stability Pool may cause the protocol to stall 21
3.2.13. It is possible for the staking position datum to grow infinitely, resulting in the datum not

fitting into the Tx . 22
3.2.14. Insufficient tests for reward collection and distribution . 24
3.2.15. Lack of tests for helper functions . 25
3.2.16. Documentation Enhancements . 25
3.2.17. Missing integration tests with the real Cardano environment risks unexpected issues during

deployment . 26

4. Conclusion 27

5. Appendix 28
5.1. Vulnerability types . 28

5.1.1. Other redeemer . 28
5.1.2. Other token name . 28

2

CONTENTS Indigo Protocol Audit Report - Revision 1

5.1.3. Unbounded Protocol datum . 29
5.1.4. Arbitrary UTxO datum . 29
5.1.5. Unbounded protocol value . 29
5.1.6. Foreign UTxO tokens . 30
5.1.7. Multiple satisfaction . 30
5.1.8. Locked Ada . 30
5.1.9. Locked non Ada values . 31
5.1.10. Missing UTxO authentication . 31
5.1.11. Missing incentive . 31
5.1.12. Bad incentive . 31
5.1.13. UTxO contention . 32
5.1.14. Cheap spam . 32
5.1.15. Insufficient tests . 32
5.1.16. Incorrect documentation . 32
5.1.17. Insufficient documentation . 33

5.2. Terminology and Abbreviations . 33

3

Indigo Protocol Audit Report - Revision 1

Revision Notes
Revision 1 - 2022-12-09
Revision 1 of the issued Audit Report (issued 2022-11-07) brings the following changes to the original document:

1. A vulnerability that was found to be a duplicate was removed from the list of identified vulnerabilities.
Any changes resulting from its removal have been applied throughout the report.

2. Technical and implementation details were omitted from the description of the vulnerabilities.

3. Some text was rephrased for readability purposes.

4. Some members of the MLabs Audit team conducted a post-audit review of proposed fixes for the identified
vulnerabilities. The inclusion of a status tag for each vulnerability reflects the findings of this review.

4

Indigo Protocol Audit Report - Revision 1

Index
1. Disclaimer
2. Background
2.1. Scope
2.2. Parties Involved in Audit Process
2.3. Methodology
2.3.1. Information
2.3.1.1. Audited File Checksums
2.3.2. Audit Timeline
2.3.3. Metrics
2.3.3.1. CVSS
2.3.3.2. Severity Levels
3. Audit
3.1. Executive Summary
3.1.1. Code Coverage
3.2. Vulnerabilities
3.2.1. Incorrect validation of CDP liquidation transactions allows burning arbitrary amount of iAsset from the
Stability Pool
3.2.1.1. Description
3.2.1.2. Recommendation
3.2.1.3. References
3.2.2. Incorrect validation of poll shard merging allows stealing of poll tokens
3.2.2.1. Description
3.2.2.2. Recommendation
3.2.2.3. References
3.2.3. Incorrect validation of Proposal execution allows stealing of the Upgrade Token
3.2.3.1. Description
3.2.3.2. Recommendation
3.2.3.3. References
3.2.4. Missing check in the CDP validator to ensure that inputs from other scripts are spent with the correct
redeemer is unsafe
3.2.4.1. Description
3.2.4.2. Recommendation
3.2.4.3. References
3.2.5. Lack of restriction on collector value may halt distribution of protocol fees
3.2.5.1. Description
3.2.5.1.1. Disclaimer
3.2.5.2. Recommendation
3.2.5.3. References
3.2.6. Creation of duplicate iAssets results in invalid protocol state
3.2.6.1. Description
3.2.6.2. Recommendation
3.2.6.3. References
3.2.7. Missing check in the Poll validator to ensure that inputs from other scripts are spent with the correct
redeemer is unsafe
3.2.7.1. Description
3.2.7.2. Recommendation
3.2.7.3. References

5

Indigo Protocol Audit Report - Revision 1

3.2.8. Contention and low-cost transactions in the Staking Manager may cause the protocol to stall
3.2.8.1. Description
3.2.8.2. Recommendation
3.2.8.3. References
3.2.9. Potential Governance Power Misuse
3.2.9.1. Description
3.2.9.2. Recommendation
3.2.9.3. References
3.2.10. No lower bound for CDP positions can dis-incentivize CDP liquidation
3.2.10.1. Description
3.2.10.2. Recommendation
3.2.10.3. References
3.2.11. Locked Ada values in multiple protocol UTxOs
3.2.11.1. Description
3.2.11.2. Recommendation
3.2.11.3. References
3.2.12. Contention in the Stability Pool may cause the protocol to stall
3.2.12.1. Description
3.2.12.2. Recommendation
3.2.12.3. References
3.2.13. It is possible for the staking position datum to grow infinitely, resulting in the datum not fitting into the
Tx
3.2.13.1. Description
3.2.13.2. Recommendation
3.2.13.3. References
3.2.14. Insufficient tests for reward collection and distribution
3.2.14.1. Description
3.2.14.2. Recommendation
3.2.14.3. References
3.2.15. Lack of tests for helper functions
3.2.15.1. Description
3.2.15.2. Recommendation
3.2.15.3. References
3.2.16. Documentation Enhancements
3.2.16.1. Description
3.2.16.2. Recommended Fix
3.2.16.3. References
3.2.17. Missing integration tests with the real Cardano environment risks unexpected issues during deployment
3.2.17.1. Description
3.2.17.2. Recommendation
3.2.17.3. References
4. Conclusion
5. Appendix
5.1. Vulnerability types
5.1.1. Other redeemer
5.1.2. Other token name
5.1.3. Unbounded Protocol datum
5.1.4. Arbitrary UTxO datum
5.1.5. Unbounded protocol value

6

Indigo Protocol Audit Report - Revision 1

5.1.6. Foreign UTxO tokens
5.1.7. Multiple satisfaction
5.1.8. Locked Ada
5.1.9. Locked non Ada values
5.1.10. Missing UTxO authentication
5.1.11. Missing incentive
5.1.12. Bad incentive
5.1.13. UTxO contention
5.1.14. Cheap spam
5.1.15. Insufficient tests
5.1.16. Incorrect documentation
5.1.17. Insufficient documentation
5.2. Terminology and Abbreviations

7

Indigo Protocol Audit Report - Revision 1

References
• Audit Meta Issue
• Indigo GitHub Repository
• CVSS-Scale
• Common Vulnerability Scoring System
• NVD Calculator

8

https://github.com/IndigoProtocol/smart-contracts/issues/439
https://github.com/IndigoProtocol/smart-contracts
https://www.first.org/cvss/v3.1/specification-document#Qualitative-Severity-Rating-Scale
https://www.first.org/cvss/
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator

Indigo Protocol Audit Report - Revision 1

1. Disclaimer
This audit report is presented without warranty or guarantee of any type. Neither MLabs nor
its auditors can assume any liability whatsoever for the use, deployment or operations of the
audited code. This report lists the most salient concerns that have become apparent to MLabs’ auditors after
an inspection of the project’s codebase and documentation, given the time available for the audit. Corrections
may arise, including the revision of incorrectly reported issues. Therefore, MLabs advises against making any
business or other decisions based on the contents of this report.

An audit does not guarantee security. Reasoning about security requires careful considerations about the
capabilities of the assumed adversaries. These assumptions and the time bounds of the audit can impose realistic
constraints on the exhaustiveness of the audit process. Furthermore, the audit process involves, amongst others,
manual inspection and work which is subject to human error.

MLabs does not recommend for or against the use of any work or supplier mentioned in this report.
This report focuses on the technical implementation provided by the project’s contractors and subcontractors,
based on the information they provided, and is not meant to assess the concept, mathematical validity, or
business validity of their product. This report does not assess the implementation regarding financial viability
nor suitability for any purpose. MLabs does not accept responsibility for any loss or damage howsoever arising
which may be suffered as result of using the report nor does it guarantee any particular outcome in respect of
using the code on the smart contract.

2. Background
2.1. Scope
During the audit, MLabs has inspected the code contained in the provided files and attempted to locate problems
that can be found in the following categories:

1. Unclear or wrong specifications, that could lead to unwanted behaviour.
2. Wrongful implementation.
3. Vulnerabilities that can be leveraged by an attacker.
4. Code quality concerns and comments.

Where possible, MLabs have provided recommendations to address the relevant issues.

2.2. Parties Involved in Audit Process
In this document, we will refer to the MLabs Audit Team as MLabs. This clarification is made to avoid confusion
with the MLabs Development Team. Although MLabs (the company) has been involved in both the development
and audit of the protocol, the two teams are separate, and distinct - with no conflict of interest.

2.3. Methodology
2.3.1. Information

MLabs analysed the validator and minting scripts from the Indigo git remote IndigoProtocol/smart-contracts
starting with commit bcf9ed05. The base commit was later updated to commit 82e69a21 at the request of
Indigo.

During the audit process, vulnerabilities discovered were posted to the repository as “GitHub Issues”, and
tracked under one overarching ticket, namely Audit Issue #439 . Some of the findings were accompanied by

9

https://github.com/IndigoProtocol/smart-contracts
https://github.com/IndigoProtocol/smart-contracts/issues/439

2.3. Methodology Indigo Protocol Audit Report - Revision 1

additional tests or proofs of behaviour, which were committed to the repository as separate branches.

2.3.1.1. Audited File Checksums

The following checksums are those of files captured by commit bcf9ed05, and were generated using the following
sha256 binary:

$ sha256sum --version
sha256sum (GNU coreutils) 9.0

The checksums of the smart-contract implementation code are:

4927...d023 Indigo/Contracts/Liquidity/OnChain.hs
52a1...26b0 Indigo/Contracts/Liquidity/Common.hs
f7af...1cb5 Indigo/Contracts/Governance/Gov/OnChain.hs
c0fb...ee91 Indigo/Contracts/Governance/Gov/Common.hs
a396...14c9 Indigo/Contracts/Governance/Execute/OnChain.hs
f654...8258 Indigo/Contracts/Governance/Execute/Common.hs
b2af...58c5 Indigo/Contracts/Governance/VersionRegistry/OnChain.hs
3733...6fa1 Indigo/Contracts/Governance/VersionRegistry/Common.hs
b658...6e38 Indigo/Contracts/Governance/Poll/OnChain.hs
47b6...ed0e Indigo/Contracts/Governance/Poll/Common.hs
a64a...ffc4 Indigo/Contracts/Oracle/OnChain.hs
7f9a...1d2d Indigo/Contracts/Oracle/Common.hs
a067...cd42 Indigo/Contracts/Collector/OnChain.hs
525d...8b58 Indigo/Contracts/Collector/Common.hs
34a5...8846 Indigo/Contracts/Treasury/OnChain.hs
ef0e...5cd4 Indigo/Contracts/Treasury/Common.hs
73ba...444c Indigo/Contracts/Staking/OnChain.hs
3a2c...9e9d Indigo/Contracts/Staking/Common.hs
355c...1192 Indigo/Contracts/CDP/OnChain.hs
ab99...a4f8 Indigo/Contracts/CDP/Common.hs
0808...5b24 Indigo/Contracts/Helpers.hs
3d9c...1465 Indigo/Contracts/StabilityPool/OnChain.hs
b697...aed3 Indigo/Contracts/StabilityPool/Common.hs
fb9b...86b7 Indigo/Utils/Spooky/Helpers.hs
874d...82d9 Indigo/Utils/Spooky.hs
dcd1...59c2 Indigo/Utils/Helpers.hs
0eba...c5df Indigo/Data/Decimal.hs
f91a...a896 Indigo/Data/Token.hs

The checksum for the provided documentation is:

e4a1...c450 Indigo-Yellow-Paper.pdf

2.3.2. Audit Timeline

During the first sprint, MLabs conducted an exploratory audit of the protocol, examining all of the provided
modules and documentation to familiarize themselves with the codebase and the protocol. This was followed
by a structured exploration phase in sprints two through four, which focused on individual smart contract
vulnerability exploration and penetration testing.

10

Indigo Protocol Audit Report - Revision 1

In the final two sprints, the findings were organized into the audit report. This task was done concurrently with
reviewing some of the proposed fixes and exploring additional vulnerabilities. The review of the proposed fixes
was not originally part of the project scope, but was undertaken as a good faith effort. However, the MLabs
Audit Team cannot guarantee that the proposed fixes do not introduce new vulnerabilities when considered in
the context of the overall protocol implementation.

2.3.3. Metrics

2.3.3.1. CVSS

The audit used the Common Vulnerability Scoring System and the NVD Calculator to provide a standardised
measure for the severity of the identified vulnerabilities. Although MLabs Audit Team recognises that some of
the parameters of the tools may not be relevant for the audit of a Cardano protocol, the team believes that
using a standard is still valuable in providing a more unbiased severity metric for the findings.

2.3.3.2. Severity Levels

The aforementioned CVSS calculations were then benchmarked using the CVSS-Scale metric, receiving a grade
spanning from Low to Critical. This additional metric allows for an easier, human understandable grading,
whilst leveraging the CVSS standardised format.

3. Audit
3.1. Executive Summary
The audit findings can be categorised as the following vulnerability types:

1. other-redeemer ×2

2. utxo-contention ×2

3. cheap-spam ×2

4. locked-ada ×1

5. missing-incentive ×1

6. bad-incentive ×1

7. multiple-satisfaction ×1

8. incorrect-logic ×4

9. insufficient-tests ×3

10. incorrect-documentation ×1

11. insufficient-documentation ×1

12. unbounded-protocol-datum ×1

13. foreign-utxo-tokens ×1

3.1.1. Code Coverage

The entirety of the codebase was audited making use of hypotheses formulated on the technical specification,
together with speculative analysis based on vulnerability types.

11

https://www.first.org/cvss/
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
https://www.first.org/cvss/v3.1/specification-document#Qualitative-Severity-Rating-Scale

3.2. Vulnerabilities Indigo Protocol Audit Report - Revision 1

3.2. Vulnerabilities
Critical Severity Vulnerabilities

3.2.1. Incorrect validation of CDP liquidation transactions allows burning arbitrary amount of
iAsset from the Stability Pool

Status: Fixed

Severity CVSS Vulnerability type
Critical 9.5 incorrect-logic

3.2.1.1. Description

Incorrect validation of CDP liquidation transactions allows anyone to burn an arbitrary amount of iAsset from
the Stability Pool.

Frozen CDPs are eligible for “liquidation” by a Stability Pool associated with the same iAsset. CDP liquidation
transactions come in two forms:

1. Full liquidation transactions that liquidate all of the minted iAssets associated with a CDP.

2. Partial liquidation transactions that liquidate only a part of the minted iAssets associated with a CDP.

An incorrect validation of full liquidation transactions was identified in the function:

Indigo.Contracts.CDP.OnChain.validateLiquidateCDP,

allowing anyone to burn arbitrary amount of iAssets from the Stability Pool regardless of the amount of iAssets
actually minted by the CDP being liquidated.

For example, If a frozen CDP has 1 minted iAsset, and the Stability Pool has 1,000,000 iAsset staked. Then a
full liquidation transaction can be submitted that burns all 1,000,000 iAssets from the Stability Pool.

3.2.1.2. Recommendation

The validation of full liquidation transactions should include a check to ensure that the burned iAsset amount
does not exceed the amount of iAsset minted by the CDP being liquidated.

3.2.1.3. References

1. CVSS 3.1 Qualitative Severity Rating Scale
2. MLabs vulnerability classification
3. Indigo Yellow Paper
4. Audit - Liquidity Pool Liquidation Exploit #441
5. Liquidation exploit test
6. CDP validator
7. CDP validateLiquidateCDP

12

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:C/C:N/I:H/A:N/E:H/RL:O/RC:C/CR:X/IR:H/AR:M/MAV:N/MAC:L/MPR:N/MUI:N/MS:C/MC:X/MI:H/MA:X&version=3.1
https://www.first.org/cvss/v3.1/specification-document#Qualitative-Severity-Rating-Scale
https://www.notion.so/Vulnerability-Types-ad39253c84ce443a82b835d94d765ba2
https://indigoprotocol.io/wp-content/uploads/2022/01/yellowpaper.pdf
https://github.com/IndigoProtocol/smart-contracts/pull/441
https://github.com/IndigoProtocol/smart-contracts/blob/audit/liquidation-exploit/tests/Spec/CDP/Benchmark.hs#L247
https://github.com/IndigoProtocol/smart-contracts/blob/audit/main/src/Indigo/Contracts/CDP/OnChain.hs#L657
https://github.com/IndigoProtocol/smart-contracts/blob/audit/main/src/Indigo/Contracts/CDP/OnChain.hs#L318

3.2. Vulnerabilities Indigo Protocol Audit Report - Revision 1

3.2.2. Incorrect validation of poll shard merging allows stealing of poll tokens

Status: Fixed

Severity CVSS Vulnerability type
Critical 9.5 incorrect-logic

3.2.2.1. Description

Incorrect validation of poll shard merging allows anyone to steal all poll tokens and Ada from a poll’s shards,
while invalidating the poll. This results in a total compromise of the protocol.

Multiple polls can be active at the same time, each with their own set of poll shards. Incorrect validation allows
for the merge operation to be performed for one poll with a set of poll shards from an entirely separate poll. This
results in no restrictions being placed on the output location of the poll shards’ values, allowing an attacker to
steal the poll tokens and Ada from the poll shards. Further, the poll to which the poll shards actually belonged
is now invalidated and concludes through expiration, as its poll shards cannot be tallied.

With poll tokens under an attacker’s control, they can create more “counterfeit” poll tokens, and fake poll shards
and poll managers to make any changes they desire to the protocol.

3.2.2.2. Recommendation

A PR with the recommended fix was provided during the audit, and contains corresponding test cases.

3.2.2.3. References

1. CVSS 3.1 Qualitative Severity Rating Scale

2. MLabs vulnerability classification

3. Indigo Yellow Paper

4. Audit Merge Shards Exploit #450

5. Fix for #450 - #471

6. Vulnerable validators:

1. validateMergeShards

2. validateMergeShardsManager

7. validatePoll

8. validateCreateProposal

9. validatePollManager

10. Poll token asset class

11. Exploit transaction example

12. Exploit test case

13

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:C/C:N/I:H/A:H/E:H/RL:O/RC:C/CR:X/IR:H/AR:H/MAV:N/MAC:L/MPR:N/MUI:N/MS:C/MC:N/MI:H/MA:H&version=3.1
https://github.com/IndigoProtocol/smart-contracts/pull/471
https://www.first.org/cvss/v3.1/specification-document#Qualitative-Severity-Rating-Scale
https://www.notion.so/Vulnerability-Types-ad39253c84ce443a82b835d94d765ba2
https://indigoprotocol.io/wp-content/uploads/2022/01/yellowpaper.pdf
https://github.com/IndigoProtocol/smart-contracts/pull/450
https://github.com/IndigoProtocol/smart-contracts/pull/471
https://github.com/IndigoProtocol/smart-contracts/blob/58d2250067f91f6d424d52e08198e2688036d84d/src/Indigo/Contracts/Governance/Poll/OnChain.hs#L174
https://github.com/IndigoProtocol/smart-contracts/blob/58d2250067f91f6d424d52e08198e2688036d84d/src/Indigo/Contracts/Governance/Poll/OnChain.hs#L208
https://github.com/IndigoProtocol/smart-contracts/blob/532d8cb96e81955a812d823417b742c4f6415f4a/src/Indigo/Contracts/Governance/Poll/OnChain.hs#L58
https://github.com/IndigoProtocol/smart-contracts/blob/532d8cb96e81955a812d823417b742c4f6415f4a/src/Indigo/Contracts/Governance/Gov/OnChain.hs#L63
https://github.com/IndigoProtocol/smart-contracts/blob/532d8cb96e81955a812d823417b742c4f6415f4a/src/Indigo/Contracts/Governance/Poll/OnChain.hs#L70
https://github.com/IndigoProtocol/smart-contracts/blob/532d8cb96e81955a812d823417b742c4f6415f4a/tests/Utils/Mock.hs#L89
https://github.com/IndigoProtocol/smart-contracts/blob/29e3d2abf558bc2e51e1c9ab63c78b28040bb719/tests/Spec/Governance/Transactions.hs#L326
https://github.com/IndigoProtocol/smart-contracts/blob/29e3d2abf558bc2e51e1c9ab63c78b28040bb719/tests/Spec/Governance/Benchmark.hs#L220

3.2. Vulnerabilities Indigo Protocol Audit Report - Revision 1

3.2.3. Incorrect validation of Proposal execution allows stealing of the Upgrade Token

Status: Fixed

Severity CVSS Vulnerability types
Critical 9.3 multiple-satisfaction

3.2.3.1. Description

A user can steal an upgrade token by executing two similar proposals in the same transaction.

A passed proposal results in an eUTxO with an Upgrade Token. Spending this eUTxO - that is executing a
proposal - is governed by the Execute validator. There are pairs of Upgrade Tokens for which the validation
logic allows for the pair to be executed simultaneously in a single transaction. For example two Text Proposals
or two Modify Protocol Params proposals for the same parameters. This is due to insufficient validation logic
in the validateExecute function checks. This allows for a transaction spending two Upgrade Tokens, burning
one of them as required by the validator, but sending the remaining one to a wallet address of an attacker.

An actor in possession of an Upgrade Token could execute arbitrary proposals.

3.2.3.2. Recommendation

The insufficient check applies to the Execute validator. The validation of proposal execution should check for
the unique update token in the inputs. The check should happen in the validateExecute function.

3.2.3.3. References

1. CVSS 3.1 Qualitative Severity Rating Scale
2. MLabs vulnerability classification
3. Indigo Yellow Paper
4. Audit - Proposal Exploit #466
5. Proposal exploit test
6. Execute validator
7. Proposal types
8. Passed proposal upgrade token

14

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:H/PR:N/UI:N/S:C/C:N/I:H/A:N/E:F/RL:O/RC:C/CR:X/IR:H/AR:M/MAV:N/MAC:L/MPR:N/MUI:N/MS:C/MC:X/MI:H/MA:X&version=3.1
https://www.first.org/cvss/v3.1/specification-document#Qualitative-Severity-Rating-Scale
https://www.notion.so/Vulnerability-Types-ad39253c84ce443a82b835d94d765ba2
https://indigoprotocol.io/wp-content/uploads/2022/01/yellowpaper.pdf
https://github.com/IndigoProtocol/smart-contracts/pull/466
https://github.com/IndigoProtocol/smart-contracts/blob/3ceec2538fba0266b75c5e7cadddeae1fb8fb4e6/tests/Spec/Governance/Benchmark.hs#L197
https://github.com/IndigoProtocol/smart-contracts/blob/82e69a2122bc031690d3e070057c598d0b503608/src/Indigo/Contracts/Governance/Execute/OnChain.hs#L61
https://github.com/IndigoProtocol/smart-contracts/blob/c2748d1c03d089fcf913d31ace378a4920e909bd/src/Indigo/Contracts/Governance/Gov/Common.hs#L103
https://github.com/IndigoProtocol/smart-contracts/blob/c2748d1c03d089fcf913d31ace378a4920e909bd/src/Indigo/Contracts/Governance/Poll/OnChain.hs#L417

3.2. Vulnerabilities Indigo Protocol Audit Report - Revision 1

Medium Severity Vulnerabilities

3.2.4. Missing check in the CDP validator to ensure that inputs from other scripts are spent with
the correct redeemer is unsafe

Status: Not Fixed

Severity CVSS Vulnerability type
Low 5.7 other-redeemer

3.2.4.1. Description

The Other Redeemer vulnerability was identified in the CDP validator and specifically the:

Indigo.Contracts.CDP.OnChain.validateLiquidateCDP

function that validates spending from the CDP validator with the CDP’s Liquidate redeemer. The function
implicitly relies that the transaction spends an input from the Stability Pool validator with the Stability Pool’s
LiquidateCDP redeemer, but performs no explicit checks to ensure it, which is considered an unsafe practice.

In the future, if the Stability Pool validator is modified it could inadvertently introduce a vulnerability.

In the pre-audit engagement, a vulnerability of this type was indeed found and reported.

3.2.4.2. Recommendation

Add an explicit check in the Indigo.Contracts.CDP.OnChain.validateLiquidateCDP function using the
Indigo.Utils.Helpers.usesSpendRedeemer function to assert that the transaction spends an input from the
Stability Pool validator using the correct Stability Pool’s LiquidateCDP redeemer.

3.2.4.3. References

1. CVSS 3.1 Qualitative Severity Rating Scale
2. MLabs vulnerability classification
3. Indigo Yellow Paper
4. CDP validator
5. CDP validateLiquidateCDP
6. Stability Pool validator
7. Stability Pool validateLiquidateCDP

3.2.5. Lack of restriction on collector value may halt distribution of protocol fees

Status: Fixed

Severity CVSS Vulnerability type
Medium 6.6 foreign-utxo-tokens

3.2.5.1. Description

Collector outputs allowed by the protocol may contain arbitrary value. This may allow an attacker to block
the distribution of protocol fees, and is allowed under two circumstances.

15

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:L/E:U/RL:O/RC:X&version=3.1
https://github.com/IndigoProtocol/smart-contracts/issues/416
https://www.first.org/cvss/v3.1/specification-document#Qualitative-Severity-Rating-Scale
https://www.notion.so/Vulnerability-Types-ad39253c84ce443a82b835d94d765ba2
https://indigoprotocol.io/wp-content/uploads/2022/01/yellowpaper.pdf
https://github.com/IndigoProtocol/smart-contracts/blob/audit/main/src/Indigo/Contracts/CDP/OnChain.hs#L657
https://github.com/IndigoProtocol/smart-contracts/blob/audit/main/src/Indigo/Contracts/CDP/OnChain.hs#L318
https://github.com/IndigoProtocol/smart-contracts/blob/audit/main/src/Indigo/Contracts/StabilityPool/OnChain.hs#L64
https://github.com/IndigoProtocol/smart-contracts/blob/audit/main/src/Indigo/Contracts/StabilityPool/OnChain.hs#L205
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H/E:U/RL:U/RC:R/CR:X/IR:X/AR:X/MAV:N/MAC:L/MPR:N/MUI:N/MS:U/MC:N/MI:N/MA:H&version=3.1

3.2. Vulnerabilities Indigo Protocol Audit Report - Revision 1

3.2.5.1.1. Disclaimer

These exploits are hypothetical and there are no tests to demonstrate them.

3.2.5.2. Recommendation

1. In any automation involving collector outputs, filter out collectors with large numbers of tokens so they
are not used to create transactions which may exceed the execution unit limit.

2. In the staking manager’s Distribute validator, do not allow non-Ada tokens in the collector outputs.

3.2.5.3. References

1. CVSS 3.1 Qualitative Severity Rating Scale

2. MLabs vulnerability classification

3. Indigo Yellow Paper

4. Audit - Collector value overflow #491

5. Vulnerable validators

1. validateCollectorScript

2. validateDistribute

6. Staking manager

3.2.6. Creation of duplicate iAssets results in invalid protocol state

Status: Not Fixed

Severity CVSS Vulnerability type
Medium 4.3 incorrect-logic

3.2.6.1. Description

The Indigo Protocol tracks a “whitelist” and a “blacklist” of currently valid, respectively invalid iAssets. A valid
iAsset has a Stability Pool, can be minted through CDPs, etc., while an invalid iAsset cannot. The whitelist of
iAssets is tracked through all iAsset outputs with an Oracle. The blacklist of iAssets is everything else, including
the list of all iAsset outputs without an Oracle.

The Indigo Protocol does not prevent iAssets with the same name from being whitelisted through the governance
system (see “Governance” in the Indigo Paper), but also expects iAsset names to be unique identifiers, for
example to maintain that exactly one Stability Pool exists per iAsset. If two iAssets with the same name were
to be created, this would result in two Stability Pools for the same iAsset name. This would represent an
invalid state for the protocol with undetermined behaviour.

3.2.6.2. Recommendation

There are two options:

1. Disallow a proposal from being created which proposes an iAsset with the same name as an existing iAsset.

2. For any proposal meeting the above criteria, disallow it from being executed.

16

https://www.first.org/cvss/v3.1/specification-document#Qualitative-Severity-Rating-Scale
https://www.notion.so/Vulnerability-Types-ad39253c84ce443a82b835d94d765ba2
https://indigoprotocol.io/wp-content/uploads/2022/01/yellowpaper.pdf
https://github.com/IndigoProtocol/smart-contracts/pull/491
https://github.com/IndigoProtocol/smart-contracts/blob/a5b8128569c9ac8b8853650fcd17d60f64ff013a/src/Indigo/Contracts/Collector/OnChain.hs#L38
https://github.com/IndigoProtocol/smart-contracts/blob/a5b8128569c9ac8b8853650fcd17d60f64ff013a/src/Indigo/Contracts/Staking/OnChain.hs#L173
https://github.com/IndigoProtocol/smart-contracts/blob/532d8cb96e81955a812d823417b742c4f6415f4a/src/Indigo/Contracts/Staking/OnChain.hs#L41
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:H/PR:N/UI:R/S:C/C:N/I:L/A:L/E:U/RL:U/RC:C&version=3.1
https://indigoprotocol.io/wp-content/uploads/2022/11/indigo-paper-v1.0.1.pdf

3.2. Vulnerabilities Indigo Protocol Audit Report - Revision 1

The first option is preferable, but performance constraints may require the second option.

In either case, this would require a list of the current iAsset name to be maintained. The list could be held in the
datum of the Governance output. The list would need to be updated during the execution of ProposeAsset and
MigrateAsset proposals, and the Governance output could be used as a reference input to acquire the current
whitelist in order to check for a duplicate iAsset.

3.2.6.3. References

1. CVSS 3.1 Qualitative Severity Rating Scale
2. MLabs vulnerability classification
3. Indigo Paper
4. Audit - Protocol allows but does not account for duplicate iAssets #481
5. Relevant validators:

1. validateExecute
2. validateCreateProposal

3.2.7. Missing check in the Poll validator to ensure that inputs from other scripts are spent with
the correct redeemer is unsafe

Status: Fixed

Severity CVSS Vulnerability type
Medium 5.7 other-redeemer

3.2.7.1. Description

The Other Redeemer vulnerability was identified in the Poll validator and specifically the

Indigo.Contracts.Governance.Poll.OnChain.validateVote function that validates spending from the Poll
validator with the Poll’s Vote redeemer. The function implicitly relies that the transaction spends an input from
the Staking validator with the Staking’s Lock redeemer, but performs no explicit checks to ensure it, which is
considered an unsafe practice.

In the future, if the Poll validator is modified it could inadvertently introduce a vulnerability.

In the pre-audit engagement, a vulnerability of this type was indeed found and reported.

3.2.7.2. Recommendation

Add an explicit check in the Indigo.Contracts.Governance.Poll.OnChain.validateVote function to assert
that the transaction spends an input from the Staking validator using the correct redeemer.

3.2.7.3. References

1. CVSS 3.1 Qualitative Severity Rating Scale
2. MLabs vulnerability classification
3. Indigo Yellow Paper
4. Poll validator
5. Poll validateVote
6. Staking validator
7. Staking validateLock

17

https://github.com/IndigoProtocol/smart-contracts/blob/224a5808372a252e2ca34f2d5630370ff3448a7b/src/Indigo/Contracts/Governance/Gov/Common.hs#L139
https://github.com/IndigoProtocol/smart-contracts/blob/224a5808372a252e2ca34f2d5630370ff3448a7b/src/Indigo/Contracts/Governance/Gov/Common.hs#L139
https://github.com/IndigoProtocol/smart-contracts/blob/224a5808372a252e2ca34f2d5630370ff3448a7b/src/Indigo/Contracts/Governance/Gov/Common.hs#L104-L108
https://github.com/IndigoProtocol/smart-contracts/blob/224a5808372a252e2ca34f2d5630370ff3448a7b/src/Indigo/Contracts/Governance/Gov/Common.hs#L104-L108
https://www.first.org/cvss/v3.1/specification-document#Qualitative-Severity-Rating-Scale
https://www.notion.so/Vulnerability-Types-ad39253c84ce443a82b835d94d765ba2
https://indigoprotocol.io/wp-content/uploads/2022/11/indigo-paper-v1.0.1.pdf
https://github.com/IndigoProtocol/smart-contracts/issues/481
https://github.com/IndigoProtocol/smart-contracts/blob/224a5808372a252e2ca34f2d5630370ff3448a7b/src/Indigo/Contracts/Governance/Execute/OnChain.hs#L61
https://github.com/IndigoProtocol/smart-contracts/blob/224a5808372a252e2ca34f2d5630370ff3448a7b/src/Indigo/Contracts/Governance/Gov/OnChain.hs#L63
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:L/E:U/RL:O/RC:X&version=3.1
https://github.com/IndigoProtocol/smart-contracts/issues/416
https://www.first.org/cvss/v3.1/specification-document#Qualitative-Severity-Rating-Scale
https://www.notion.so/Vulnerability-Types-ad39253c84ce443a82b835d94d765ba2
https://indigoprotocol.io/wp-content/uploads/2022/01/yellowpaper.pdf
https://github.com/IndigoProtocol/smart-contracts/blob/audit/main/src/Indigo/Contracts/Governance/Poll/OnChain.hs#L51
https://github.com/IndigoProtocol/smart-contracts/blob/audit/main/src/Indigo/Contracts/Governance/Poll/OnChain.hs#L51
https://github.com/IndigoProtocol/smart-contracts/blob/audit/main/src/Indigo/Contracts/Staking/OnChain.hs#L35
https://github.com/IndigoProtocol/smart-contracts/blob/audit/main/src/Indigo/Contracts/Staking/OnChain.hs#L382

3.2. Vulnerabilities Indigo Protocol Audit Report - Revision 1

3.2.8. Contention and low-cost transactions in the Staking Manager may cause the protocol to
stall

Status: Fixed

Severity CVSS Vulnerability type
Medium 6.9 utxo-contention cheap-spam

3.2.8.1. Description

The Indigo Protocol has a single output known as the Staking Manager which keeps track of the status of the
Indy stakers. All staking must be done through the Staking Manager, which creates a single point of contention;
this is acknowledged in the Indigo Yellowpaper.

The Distribute validator of the staking manager allows repeatable, low-cost transactions whenever there is Ada
in a collector output. This enables malicious actors to spam the Staking Manager UTxO at low cost, effectively
stalling the protocol’s ability to maintain its staking positions and distribute protocol fees.

3.2.8.2. Recommendation

In the staking manager’s distribute validator:

1. Require the collector inputs to transfer as much Ada as possible to the staking manager. This could also
be done in the collector validator, but it is probably more efficient to do it in the staking manager.

2. Require a minimum amount to be transferred from the collectors to the staking manager, for example 2
Ada.

The first point stops attackers from using an existing collector with a large amount of protocol fees. The second
point deters attackers from creating their own collectors with small amounts of Ada, just to use those collectors
to pass a few Lovelace at a time to the staking manager.

3.2.8.3. References

1. CVSS 3.1 Qualitative Severity Rating Scale
2. MLabs vulnerability classification
3. Indigo Yellow Paper
4. Audit - Staking Manager allows cheap spam #502
5. Vulnerable validators:

1. validateDistribute
2. validateCollectorScript

18

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H/E:U/RL:U/RC:C&version=3.1
https://www.first.org/cvss/v3.1/specification-document#Qualitative-Severity-Rating-Scale
https://www.notion.so/Vulnerability-Types-ad39253c84ce443a82b835d94d765ba2
https://indigoprotocol.io/wp-content/uploads/2022/01/yellowpaper.pdf
https://github.com/IndigoProtocol/smart-contracts/pull/502
https://github.com/IndigoProtocol/smart-contracts/blob/eef3f278fa2bdeb63fcbb2ae8494adca5d8a52f9/src/Indigo/Contracts/Staking/OnChain.hs#L170
https://github.com/IndigoProtocol/smart-contracts/blob/eef3f278fa2bdeb63fcbb2ae8494adca5d8a52f9/src/Indigo/Contracts/Collector/OnChain.hs#L42

3.2. Vulnerabilities Indigo Protocol Audit Report - Revision 1

Low Severity Vulnerabilities

3.2.9. Potential Governance Power Misuse

Status: Not Fixed

Severity CVSS Vulnerability type
Low 4.4 bad-incentive

3.2.9.1. Description

The Governance system is an essential and powerful aspect of the Indigo protocol. Many aspects of Indigo can
be changed through the use of Governance enabled powers, for example: the MCR of an iAsset, validators for
the various contracts (like the Stability Pool), etc. However, Governance enabled powers could be misused.

3.2.9.2. Recommendation

While there is no clear solution to this problem, we can mitigate it by having more control over INDY tokens,
which are used for voting on the Indigo protocol.

3.2.9.3. References

1. CVSS 3.1 Qualitative Severity Rating Scale
2. MLabs vulnerability classification
3. Corresponding GH issue
4. Governance contracts

3.2.10. No lower bound for CDP positions can dis-incentivize CDP liquidation

Status: Fixed

Severity CVSS Vulnerability type
Low 4.6 missing-incentive

3.2.10.1. Description

Indigo protocol allows creation of arbitrarily small CDPs which could disincentivize freezing and liquidation of
such CDPs and in turn compromise the minimal collateral ratio goal of the Indigo protocol.

This happens when the collateral surplus contained within a CDP that liquidators hope to acquire is smaller
than the total transaction cost of freezing and liquidating the CDP. Effectively, the liquidation would incur a
net loss on the Stability Provider that is trying to liquidate the CDP.

3.2.10.2. Recommendation

Before we discuss the solution for the problem, we think it is worth looking into what we are trying to achieve.
Currently, in some circumstances the protocol misses to implement an incentive to liquidate a CDP holding some
‘small’ amounts. We want to account for such circumstances by implementing a proper incentive to liquidate

19

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:N/E:U/RL:W/RC:U&version=3.1
https://www.first.org/cvss/v3.1/specification-document#Qualitative-Severity-Rating-Scale
https://www.notion.so/Vulnerability-Types-ad39253c84ce443a82b835d94d765ba2
https://github.com/IndigoProtocol/smart-contracts/issues/499
https://github.com/IndigoProtocol/smart-contracts/tree/audit/main/src/Indigo/Contracts/Governance
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:N/E:U/RL:O/RC:X&version=3.1

3.2. Vulnerabilities Indigo Protocol Audit Report - Revision 1

any under collateralized CDP. However, there’s no need to incentivize everyone to liquidate since the CDP will
eventually be liquidated by the users who are incentivized to do so.

The solution for this missing incentive problem requires careful balance between:

1. Users who own some substantial amount of iAsset present in the Stability Pool,
2. Typical percent of Stability Pool depletion when liquidating a CDP.
3. The price at which liquidation will occur.

Incentivizing every user of the Stability Pool is not particularly good, because some users may own iAssets in the
Stability Pool that are close to zero (for example: 0.000001%), hence their reward when liquidating a CDP will
also be close to zero (R * 0.000001) unless the CDP whose liquidation is performed contains massive amount
of collateral. Therefore, if we want to incentivize such users to liquidate the CDPs then the lower bound for
liquidating the CDP will be very high, which means very few people will be able to open the CDP.

Hence, we want to find a good balance between users that own at least some substantial amount of iAssets
present in the Stability Pool (something like: 1%) and create a lower bound based on that. Such that every user
who owns at least 1% of the Stability Pool is guaranteed to have a profit when liquidating a CDP.

One way to achieve this is by using the following formula:

R - (P + F) > 0

Where

• N = amount of iAssets,
• F = Tx Fee for liquidation of CDP + Tx Fee for Freezing the CDP.
• P = Price of iAsset at which liquidation will occur * Depletion percent of Stability Pool * N,
• R = MCR * Price of the iAsset * Min percent of Stability Pool a user should own * N.

Now, we solve for N, by substituting appropriate values in the equation.

3.2.10.3. References

1. CVSS 3.1 Qualitative Severity Rating Scale
2. MLabs vulnerability classification
3. Indigo Yellow Paper
4. CDP validator

3.2.11. Locked Ada values in multiple protocol UTxOs

Status: Not Fixed

Severity CVSS Vulnerability type
Low 4.3 locked-ada

3.2.11.1. Description

The Locked-Ada vulnerability was identified in multiple protocol UTxOs.

The associated validators, namely Version Registry, Poll Manager and Stability Pool, produce outputs that can
become indefinitely locked once they become obsolete due to the expiry mechanisms implemented in the protocol.

This impacts financial sustainability of the protocol but also compromises the availability of Ada that ought to
be circulating in Cardano.

20

https://www.first.org/cvss/v3.1/specification-document#Qualitative-Severity-Rating-Scale
https://www.notion.so/Vulnerability-Types-ad39253c84ce443a82b835d94d765ba2
https://indigoprotocol.io/wp-content/uploads/2022/01/yellowpaper.pdf
https://github.com/IndigoProtocol/smart-contracts/blob/audit/main/src/Indigo/Contracts/CDP/OnChain.hs#L657
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:N/E:U/RL:O/RC:U&version=3.1

3.2. Vulnerabilities Indigo Protocol Audit Report - Revision 1

3.2.11.2. Recommendation

Each protocol UTxO that is planned for obsolescence, should be redeemable preferably by the same user that
bare the original Ada cost of producing the output.

General approach to doing so is to extend the UTxO with a datum that contains

1. Authentication information that the redeeming user must provide in the redeeming transaction (public key
hash, authentication token, etc.)

2. Expiry time denoting when the output min utxo Ada value can be redeemed by the user

And then, extend the validator with a special redeemer to enable such redeeming transactions. The validator
should validate when the UTxO is spent with the appropriate authentication information as indicated by the
datum, after the expiry deadline had passed (also indicated in the datum).

3.2.11.3. References

1. CVSS 3.1 Qualitative Severity Rating Scale
2. MLabs vulnerability classification
3. Indigo Yellow Paper
4. Poll Manager validator
5. Stability Pool validator
6. Version Registry validator
7. Value locked by protocol #477
8. Minimum Ada value requirement

3.2.12. Contention in the Stability Pool may cause the protocol to stall

Status: Fixed

Severity CVSS Vulnerability type
Low 4.2 utxo-contention cheap-spam

3.2.12.1. Description

Indigo protocol uses a single UTxO for every Stability Pool for which the participants compete to spend when
submitting transactions conveying Stability Pool actions. This results in only one Stability Pool action being
accepted per slot, while others get discarded. This issue is already acknowledged by Indigo as described in their
yellow paper.

Additionally, a Cheap Spam vulnerability was identified in the Stability Pool validator that allows idempotent
AdjustAccount actions to be performed in the Stability Pool for a very low cost.

Compounding both vulnerabilities, it enables malicious actors to cheaply spam the contended Stability Pool
UTxO effectively stalling the protocol’s ability to liquidate CDPs and other key actions.

3.2.12.2. Recommendation

To address the Cheap Spam vulnerability, the protocol can introduce an additional fee to such actions or one of
the following changes:

1. Require initial deposit of corresponding iAsset when creating an Account in the Stability Pool,
2. Require delay when Adjusting Stability Pool Accounts to make such actions accepted less often.

21

https://www.first.org/cvss/v3.1/specification-document#Qualitative-Severity-Rating-Scale
https://www.notion.so/Vulnerability-Types-ad39253c84ce443a82b835d94d765ba2
https://indigoprotocol.io/wp-content/uploads/2022/01/yellowpaper.pdf
https://github.com/IndigoProtocol/smart-contracts/blob/audit/main/src/Indigo/Contracts/Governance/Poll/OnChain.hs#L63
https://github.com/IndigoProtocol/smart-contracts/blob/audit/main/src/Indigo/Contracts/StabilityPool/OnChain.hs#L64
https://github.com/IndigoProtocol/smart-contracts/blob/audit/main/src/Indigo/Contracts/Governance/VersionRegistry/OnChain.hs#L40
https://github.com/IndigoProtocol/smart-contracts/pull/477
https://docs.cardano.org/native-tokens/minimum-ada-value-requirement
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:L/E:P/RL:T/RC:R&version=3.1

3.2. Vulnerabilities Indigo Protocol Audit Report - Revision 1

To address the UTxO contention issue however would require a more significant design change. Here we propose
a design that could alleviate the contention problem.

The contention exists because the Indigo design couples CDP liquidation with the Stability Pool, as each
liquidation transaction requires a single input from the Stability Pool UTxO. If we agree that the overall goal
is to maintain a global MCR (minimal collateral ratio) for a certain iAsset, it seems like we can achieve this
without the Stability Pool as it stands now, but any protocol mechanism that can restore MCR.

The CDP ‘takeover’ protocol mechanic simply allows to change ownership to a CDP if that CDP is deemed
‘unhealthy’ (i.e. became under-collateralized).

1. Anyone can deposit Ada or burn the corresponding iAssets with such a ‘unhealthy’ CDP only IFF such an
action makes the CDP ‘healthy’ again (i.e. over-collateralized),

2. In the same transaction, a new CDP owner can be set effectively enabling ‘takeover’,
3. Once the CDP is ‘healthy’ the MCR is re-established,
4. Full or partial liquidation would be reduced to closing a CDP or withdrawing Ada_s by burning _iAssets.

Few implications of such design:

1. Doesn’t require a special ‘Frozen’ state for CDP.,
2. Completely decouples liquidation from the very notion of a Stability Pool,
3. All protocol participants are in direct competition to perform ‘takeovers’,
4. There’s no global contention point as N CDPs can be taken over with N parallel transactions.
5. If nobody acts on an ‘unhealthy’ CDP it can naturally recover if the price turns favourable again.

The Stability Pool could be reimagined as a separate Cardano dApp that is managed and operated independently.
It is possible that a third part could employ some version of the current Stability Pool to operate liquidation
efforts, staking and reward distributions. Such Stability Pool operators could additionally add ‘fee’ mechanisms
to account for running the automation infrastructure and transaction costs, and generally cover for the ‘yield’
service.

3.2.12.3. References

1. CVSS 3.1 Qualitative Severity Rating Scale
2. MLabs vulnerability classification
3. Indigo Yellow Paper
4. Stability Pool validator
5. Stability Pool validateAdjustAccount

3.2.13. It is possible for the staking position datum to grow infinitely, resulting in the datum not
fitting into the Tx

Status: Not Fixed

Severity CVSS Vulnerability type
Low 3.2 incorrect-logic

3.2.13.1. Description

The staking position datum contains a Map Integer (Integer, POSIXTime). This Map stores all the proposals
that a user has voted on, and is unbounded - i.e. no upper bound exists for the number of proposals a user can
vote on. The unbounded property may result in the datum becoming too large to fit in a Cardano transaction.

22

https://www.first.org/cvss/v3.1/specification-document#Qualitative-Severity-Rating-Scale
https://www.notion.so/Vulnerability-Types-ad39253c84ce443a82b835d94d765ba2
https://indigoprotocol.io/wp-content/uploads/2022/01/yellowpaper.pdf
https://github.com/IndigoProtocol/smart-contracts/blob/audit/main/src/Indigo/Contracts/StabilityPool/OnChain.hs#L64
https://github.com/IndigoProtocol/smart-contracts/blob/audit/main/src/Indigo/Contracts/StabilityPool/OnChain.hs#L353
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:L/E:P/RL:U/RC:U&version=3.1

3.2. Vulnerabilities Indigo Protocol Audit Report - Revision 1

To cause this behaviour, a user would need to vote on many simultaneous proposals. To avoid such behaviour,
we recommend benchmarking, and potentially enforcing the number of proposals that a user can vote on
simultaneously.

3.2.13.2. Recommendation

An upper limit should be set on the number of proposals a user can vote on simultaneously. It is possible to
derive this upper bound from the benchmarks.

3.2.13.3. References

1. CVSS 3.1 Qualitative Severity Rating Scale
2. MLabs vulnerability classification
3. Staking Position Datum
4. GH Issue mentioning this problem

23

https://www.first.org/cvss/v3.1/specification-document#Qualitative-Severity-Rating-Scale
https://www.notion.so/Vulnerability-Types-ad39253c84ce443a82b835d94d765ba2
https://github.com/IndigoProtocol/smart-contracts/blob/audit/main/src/Indigo/Contracts/Staking/Common.hs#L112
https://github.com/IndigoProtocol/smart-contracts/issues/500

3.2. Vulnerabilities Indigo Protocol Audit Report - Revision 1

Unclassified Severity Vulnerabilities

3.2.14. Insufficient tests for reward collection and distribution

Status: Fixed

Severity CVSS Vulnerability types
None N/A insufficient-tests

3.2.14.1. Description

There are no tests asserting the correctness of collecting and distributing protocol fees. A lack of tests means the
behaviour of the code is not fully determined and cannot be relied upon. The logic behind reward calculation is
never tested, and the following sequences of transactions are untested:

• Distribute from collector to staking manager;

• Distribute from collector to staking manager;

• Performing the above with multiple active staking positions;

• Adding protocol fees to an existing collector through a different validation path.

3.2.14.2. Recommendation

Add relevant tests to increase the confidence that the implementation indeed works as specified. Tests should
cover the scenarios above, covering the positive case and also failing as expected for incorrect reward calculation
or unauthorised spend attempts. Tests should attempt to steal the collected fees, spending Collector owned
eUTxOs to a private address.

Two PRs were opened which attempt to address these issues, however they were not considered as a part of the
audit:

1. Collector Test Suite #479
2. Protocol Fee Tests #480

3.2.14.3. References

1. CVSS 3.1 Qualitative Severity Rating Scale
2. MLabs vulnerability classification
3. Indigo Yellow Paper
4. Audit - No Collector fee tests #446
5. Audit - No staking reward tests #469
6. Collector Test Suite #479
7. Protocol Fee Tests #480
8. Staking validator
9. Relevant validator parts:

1. validateDistribute
2. validateUnstake
3. validateAdjustStakedAmount
4. validateCollectorScript

24

https://github.com/IndigoProtocol/smart-contracts/pull/479
https://github.com/IndigoProtocol/smart-contracts/pull/480
https://www.first.org/cvss/v3.1/specification-document#Qualitative-Severity-Rating-Scale
https://www.notion.so/Vulnerability-Types-ad39253c84ce443a82b835d94d765ba2
https://indigoprotocol.io/wp-content/uploads/2022/01/yellowpaper.pdf
https://github.com/IndigoProtocol/smart-contracts/pull/446
https://github.com/IndigoProtocol/smart-contracts/pull/469
https://github.com/IndigoProtocol/smart-contracts/pull/479
https://github.com/IndigoProtocol/smart-contracts/pull/480
https://github.com/IndigoProtocol/smart-contracts/blob/c2748d1c03d089fcf913d31ace378a4920e909bd/src/Indigo/Contracts/Staking/OnChain.hs#L49
https://github.com/IndigoProtocol/smart-contracts/blob/532d8cb96e81955a812d823417b742c4f6415f4a/src/Indigo/Contracts/Staking/OnChain.hs#L170
https://github.com/IndigoProtocol/smart-contracts/blob/532d8cb96e81955a812d823417b742c4f6415f4a/src/Indigo/Contracts/Staking/OnChain.hs#L322
https://github.com/IndigoProtocol/smart-contracts/blob/532d8cb96e81955a812d823417b742c4f6415f4a/src/Indigo/Contracts/Staking/OnChain.hs#L240
https://github.com/IndigoProtocol/smart-contracts/blob/c2748d1c03d089fcf913d31ace378a4920e909bd/src/Indigo/Contracts/Collector/OnChain.hs#L30

3.2. Vulnerabilities Indigo Protocol Audit Report - Revision 1

3.2.15. Lack of tests for helper functions

Status: Not Fixed

Severity CVSS Vulnerability type
None N/A insufficient-tests

3.2.15.1. Description

There are currently no unit tests for the helper functions in Indigo.Utils.Helpers. A lack of tests means the
behaviour of the code is not fully determined and cannot be relied upon. These functions are used extensively
throughout the codebase so they should be well tested. They are tested indirectly through the transaction tests,
but this method is more likely to miss edge cases.

3.2.15.2. Recommendation

Add unit tests for the helper functions in Indigo.Utils.Helpers.

3.2.15.3. References

1. CVSS 3.1 Qualitative Severity Rating Scale

2. MLabs vulnerability classification

3. Indigo Yellow Paper

4. Indigo.Utils.Helpers

5. Audit - No helper function unit tests #470

3.2.16. Documentation Enhancements

Status: Fixed

Severity CVSS RATING vulnerability types
None 0.0 insufficient-documentation

incorrect-documentation

3.2.16.1. Description

Proper documentation is crucial to avoid introducing new bugs in the future.

Codebase generally contains few comments, but the consistent naming and module structure together with
self-commenting validator checks make it a lesser problem.

Following are issues that could be improved still:

1. RecordEpochToScaleToSum endpoint is missing from the yellow-paper.
2. Minimal collateral ratio is passed in code as a percentage. This is undocumented both in the types and

functions using it.
3. sessSnapshot field is confusingly named. Elsewhere “snapshot” refers to values with StabilityPoolSnapshot

type.
4. The implementation of the tests is poorly documented.

25

https://github.com/IndigoProtocol/smart-contracts/blob/64414a4cc1923de2926acf4e22705f1f4d6efe2d/src/Indigo/Utils/Helpers.hs
https://www.first.org/cvss/v3.1/specification-document#Qualitative-Severity-Rating-Scale
https://www.notion.so/Vulnerability-Types-ad39253c84ce443a82b835d94d765ba2
https://indigoprotocol.io/wp-content/uploads/2022/01/yellowpaper.pdf
https://github.com/IndigoProtocol/smart-contracts/blob/64414a4cc1923de2926acf4e22705f1f4d6efe2d/src/Indigo/Utils/Helpers.hs
https://github.com/IndigoProtocol/smart-contracts/pull/470
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:C/C:N/I:N/A:N/E:U/RL:X/RC:X/CR:H/IR:H/AR:M/MAV:X/MAC:X/MPR:X/MUI:X/MS:X/MC:N/MI:N/MA:N&version=3.1
https://github.com/IndigoProtocol/smart-contracts/blob/c2748d1c03d089fcf913d31ace378a4920e909bd/src/Indigo/Contracts/StabilityPool/OnChain.hs#L94
https://github.com/IndigoProtocol/smart-contracts/blob/c2748d1c03d089fcf913d31ace378a4920e909bd/src/Indigo/Contracts/StabilityPool/Common.hs#L207

3.2. Vulnerabilities Indigo Protocol Audit Report - Revision 1

3.2.16.2. Recommended Fix

We recommend expanding section 3.2.4 of the Indigo Yellowpaper with point on RecordEpochToScaleToSum
redeemer. The overCollateralized function should have its ratio argument documented. Also worth
considering is a newtype for decimals understood as percentages. Consider renaming the sessSnapshot field for
consistency. Finally improving the documentation of the test suite would go a long way in making sure the tests
cover all cases.

3.2.16.3. References

1. CVSS 3.1 Qualitative Severity Rating Scale
2. MLabs vulnerability classification
3. Indigo Yellow Paper
4. #478 - Audit - Documentation enhancements
5. RecordEpochToScaleToSum endpoint
6. overCollateralized function
7. sessSnapshot field

3.2.17. Missing integration tests with the real Cardano environment risks unexpected issues
during deployment

Status: Not Fixed

Severity CVSS Vulnerability type
None N/A insufficient-tests

3.2.17.1. Description

Currently, Indigo’s test suite uses the Plutus Simple Model testing framework, which is similar to emulator
traces and is used to estimate program resource usage and assert correctness conveniently and quickly.

However, testing and running Plutus programs in a real Cardano network is essential as various issues can arise
when dealing with not deterministic parts of the blockchain like contention, slot timing, block validation, etc.

3.2.17.2. Recommendation

Test the Indigo Plutus program behaviour using any of the available integration test frameworks, specifically
Plutip or using CTL integration with Plutip.

3.2.17.3. References

1. CVSS 3.1 Qualitative Severity Rating Scale
2. MLabs vulnerability classification
3. Indigo Yellow Paper
4. Plutip
5. Plutus Simple Model
6. cardano-transaction-library
7. CTL integration with Plutip

26

https://github.com/IndigoProtocol/smart-contracts/blob/c2748d1c03d089fcf913d31ace378a4920e909bd/src/Indigo/Contracts/CDP/Common.hs#L241
https://www.first.org/cvss/v3.1/specification-document#Qualitative-Severity-Rating-Scale
https://www.notion.so/Vulnerability-Types-ad39253c84ce443a82b835d94d765ba2
https://indigoprotocol.io/wp-content/uploads/2022/01/yellowpaper.pdf
https://github.com/IndigoProtocol/smart-contracts/issues/478
https://github.com/IndigoProtocol/smart-contracts/blob/c2748d1c03d089fcf913d31ace378a4920e909bd/src/Indigo/Contracts/StabilityPool/OnChain.hs#L94
https://github.com/IndigoProtocol/smart-contracts/blob/c2748d1c03d089fcf913d31ace378a4920e909bd/src/Indigo/Contracts/CDP/Common.hs#L241
https://github.com/IndigoProtocol/smart-contracts/blob/c2748d1c03d089fcf913d31ace378a4920e909bd/src/Indigo/Contracts/StabilityPool/Common.hs#L207
https://github.com/mlabs-haskell/plutus-simple-model
https://github.com/mlabs-haskell/plutip
https://github.com/Plutonomicon/cardano-transaction-lib/blob/develop/doc/plutip-testing.md
https://www.first.org/cvss/v3.1/specification-document#Qualitative-Severity-Rating-Scale
https://www.notion.so/Vulnerability-Types-ad39253c84ce443a82b835d94d765ba2
https://indigoprotocol.io/wp-content/uploads/2022/01/yellowpaper.pdf
https://github.com/mlabs-haskell/plutip
https://github.com/mlabs-haskell/plutus-simple-model
https://github.com/Plutonomicon/cardano-transaction-lib
https://github.com/Plutonomicon/cardano-transaction-lib/blob/develop/doc/plutip-testing.md

Indigo Protocol Audit Report - Revision 1

4. Conclusion
During the six week period MLabs inspected the on-chain code of the Indigo protocol revealing 17 vulnerabilities,
3 of them critical. These enable a malicious actor to burn assets of a Stability Pool or compromise the governance
part of the protocol by creating fake votes or executing arbitrary proposals. We also identified vulnerabilities of
medium severity including contention issues, missing incentives and ones that (while not directly exploitable)
remain a risk factor with the potential to compound in the event of further protocol changes. Lastly we
pinpointed holes in the test suite, documentation shortcomings and cases of value locked in the protocol due
to minimum Ada requirement. The list is not exhaustive, containing only issues identified by the team in the
limited timeframe of the audit. MLabs has summarised the findings in the given report, outlining potential
dangers and offering recommendations. The report is provided without a guarantee of any kind, but we hope
it proves useful. Already before the audit conclusion, the Indigo development team has responded with fixes.
MLabs has provided feedback to some of these, but a thorough review needs to be carried out by the responsible
Indigo developers.

27

Indigo Protocol Audit Report - Revision 1

5. Appendix
5.1. Vulnerability types
The following list of vulnerability types represents a list of commonly found vulnerabilities in Cardano smart
contract protocol designs or implementations. The list of types is actively updated and added to as new
vulnerabilities are found.

5.1.1. Other redeemer

ID: other-redeemer

Test: Transaction can avoid some checks when it can successfully spend a UTxO or mint a token with a redeemer
that some script logic didn’t expect to be used.

Property: A validator/policy should check explicitly whether the ‘other’ validator/policy is invoked with the
expected redeemer.

Impacts:

• Bypassing checks

5.1.2. Other token name

ID: other-token-names

Test: Transaction can mint additional tokens with some ‘other’ token name of ‘own’ currency alongside the
intended token name.

Property: A policy should check that the total value minted of their ‘own’ currency symbol doesn’t include
unintended token names.

Impacts:

• Stealing protocol tokens
• Unauthorised protocol actions

Example:

A common coding pattern that introduces such a vulnerability can be observed in the following excerpt:

vulnPolicy rmr ctx = do
...
assetClassValueOf txInfoMint ownAssetClass == someQuantity
...

The recommended coding pattern to use in order to prevent such a vulnerability can be observed in the following
excerpt:

safePolicy rmr ctx = do
...
txInfoMint == (assetClassValue ownAssetClass someQuantity)
...

28

5.1. Vulnerability types Indigo Protocol Audit Report - Revision 1

5.1.3. Unbounded Protocol datum

ID: unbounded-protocol-datum

Test: Transaction can create protocol UTxOs with increasingly bigger protocol datums.

Property: A protocol should ensure that all protocol datums are bounded within reasonable limits.

Impacts:

• Script XU and/or size overflow
• Unspendable outputs
• Protocol halting

Example:

A common design pattern that introduces such vulnerability can be observed in the following excerpt:

data MyDatum = Foo {
users :: [String],
userToPkh :: Map String PubKeyHash

}

If the protocol allows these datums to grow indefinitely, eventually XU and/or size limits imposed by the Plutus
interpreter will be reached, rendering the output unspendable.

The recommended design patterns is either to limit the growth of such datums in validators/policies or to split
the datum across different outputs.

5.1.4. Arbitrary UTxO datum

ID: arbitrary-utxo-datum

Test: Transaction can create protocol UTxOs with arbitrary datums.

Property: A protocol should ensure that all protocol UTxOs hold intended datums.

Impacts:

• Script XU overflow
• Unspendable outputs
• Protocol halting

5.1.5. Unbounded protocol value

ID: unbounded-protocol-value

Test: Transaction can create increasingly more protocol tokens in protocol UTxOs.

Property: A protocol should ensure that protocol values held in protocol UTxOs are bounded within reasonable
limits.

Impacts:

• Script XU overflow
• Unspendable outputs
• Protocol halting

29

5.1. Vulnerability types Indigo Protocol Audit Report - Revision 1

5.1.6. Foreign UTxO tokens

ID: foreign-utxo-tokens

Test: Transaction can create protocol UTxOs with foreign tokens attached alongside the protocol tokens.

Property: A protocol should ensure that protocol UTxOs only hold the tokens used by the protocol.

Impacts:

• Script XU overflow
• Unspendable outputs
• Protocol halting

5.1.7. Multiple satisfaction

ID: multiple-satisfaction

Test: Transaction can spend multiple UTxOs from a validator by satisfying burning and/or paying requirements
for a single input while paying the rest of the unaccounted input value to a foreign address.

Property: A validator/policy should ensure that all burning and paying requirements consider all relevant
inputs in aggregate.

Impacts:

• Stealing protocol tokens
• Unauthorised protocol actions
• Integrity

Example:

A common coding pattern that introduces such a vulnerability can be observed in the following excerpt:

vulnValidator _ _ ctx =
ownInput ← findOwnInput ctx
ownOutput ← findContinuingOutput ctx
traceIfFalse “Must continue tokens” (valueIn ownInput == valueIn ownOutput)

Imagine two outputs at vulnValidator holding the same values

A. TxOut ($FOO x 1 + $ADA x 2) B. TxOut ($FOO x 1 + $ADA x 2)

A transaction that spends both of these outputs can steal value from one spent output by simply paying $FOO x
1 + $ADA x 2 to the ‘correct’ address of the vulnValidator, and paying the rest $FOO x 1 + $ADA x 2 to an
arbitrary address.

5.1.8. Locked Ada

ID: locked-ada

Test: Protocol locks Ada value indefinitely in obsolete validator outputs.

Property: Protocol should include mechanisms to enable redeeming any Ada value stored at obsolete validator
outputs.

Impacts:

• Financial sustainability

30

5.1. Vulnerability types Indigo Protocol Audit Report - Revision 1

• Cardano halting

5.1.9. Locked non Ada values

ID: locked-nonada-values

Test: Protocol indefinitely locks some non-Ada values that ought to be circulating in the economy.

Property: Protocol should include mechanisms to enable redeeming any non-Ada value stored at obsolete
validator outputs.

Impacts:

• Financial sustainability
• Protocol halting

5.1.10. Missing UTxO authentication

ID: missing-utxo-authentication

Test: Transaction can perform a protocol action by spending or referencing an illegitimate output of a protocol
validator.

Property: All spending and referencing of protocol outputs should be authenticated.

Impacts:

• Unauthorised protocol actions

Example:

Checking only for validator address and not checking for an authentication token.,

5.1.11. Missing incentive

ID: missing-incentive

Test: There is no incentive for users to participate in the protocol to maintain the intended goals of the protocol.

Property: All users in the Protocol should have an incentive to maintain the intended goals of the protocol

Impacts:

• Protocol stalling
• Protocol halting

5.1.12. Bad incentive

ID: bad-incentive

Test: There is an incentive for users to participate in the protocol that compromises the intended goals of the
protocol.

Property: No users of the protocol should have an incentive to compromise the intended goals of the protocol.

Impacts:

• Protocol stalling
• Protocol halting

31

5.1. Vulnerability types Indigo Protocol Audit Report - Revision 1

5.1.13. UTxO contention

ID: utxo-contention

Test: The protocol requires that transactions spend a globally shared UTxO(s) thereby introducing a contention
point.

Property: The protocol should enable parallel transactions and contention-less global state management if
possible.

Impacts:

• Protocol stalling
• Protocol halting

5.1.14. Cheap spam

ID: cheap-spam

Test: A transaction can introduce an idempotent or useless action/effect in the protocol for a low cost that can
compromise protocol operations.

Property: The protocol should ensure that the cost for introducing a salient action is sufficient to deter
spamming.

Severity increases when compounded with the utxo-contention vulnerability.

Impacts:

• Protocol stalling
• Protocol halting

5.1.15. Insufficient tests

ID: insufficient-tests

Test: There is piece of validation logic that tests do not attempt to verify.

Property: Every piece of validator code gets meaningfully executed during tests.

Impacts:

• Correctness

5.1.16. Incorrect documentation

ID: incorrect-documentation

Test: There is a mistake or something confusing in existing documentation.

Property: Everything documented is clear and correct.

Impacts:

• Correctness
• Maintainability

32

5.2. Terminology and Abbreviations Indigo Protocol Audit Report - Revision 1

5.1.17. Insufficient documentation

ID: insufficient-documentation

Test: There is a lack of important documentation.

Property: Everything of importance is documented.

Impacts:

• Comprehension
• Correctness

5.2. Terminology and Abbreviations
Throughout the report, the following abbreviations and terms have been used:

• Ada: Cardano digital currency.
• CDP: collateralized debt position.
• eUTxO: extended unspent transaction output. Used interchangeably with utxo in the context of the report.
• iAsset: Indigo synthetic Asset.
• Indy: Indigo utility token.
• Lovelace: Cardano digital currency subdivision. One million Lovelace is equal to one Ada.
• MCR: minimum collateral ratio.
• Staker : a user currently staking Indy tokens int the Indigo protocol.
• Tx: transaction.
• User : a user of the Indigo protocol.

33

	Revision Notes
	Revision 1 - 2022-12-09

	Index
	1. Disclaimer
	2. Background
	2.1. Scope
	2.2. Parties Involved in Audit Process
	2.3. Methodology
	2.3.1. Information
	2.3.2. Audit Timeline
	2.3.3. Metrics

	3. Audit
	3.1. Executive Summary
	3.1.1. Code Coverage

	3.2. Vulnerabilities
	3.2.1. Incorrect validation of CDP liquidation transactions allows burning arbitrary amount of iAsset from the Stability Pool
	3.2.2. Incorrect validation of poll shard merging allows stealing of poll tokens
	3.2.3. Incorrect validation of Proposal execution allows stealing of the Upgrade Token
	3.2.4. Missing check in the CDP validator to ensure that inputs from other scripts are spent with the correct redeemer is unsafe
	3.2.5. Lack of restriction on collector value may halt distribution of protocol fees
	3.2.6. Creation of duplicate iAssets results in invalid protocol state
	3.2.7. Missing check in the Poll validator to ensure that inputs from other scripts are spent with the correct redeemer is unsafe
	3.2.8. Contention and low-cost transactions in the Staking Manager may cause the protocol to stall
	3.2.9. Potential Governance Power Misuse
	3.2.10. No lower bound for CDP positions can dis-incentivize CDP liquidation
	3.2.11. Locked Ada values in multiple protocol UTxOs
	3.2.12. Contention in the Stability Pool may cause the protocol to stall
	3.2.13. It is possible for the staking position datum to grow infinitely, resulting in the datum not fitting into the Tx
	3.2.14. Insufficient tests for reward collection and distribution
	3.2.15. Lack of tests for helper functions
	3.2.16. Documentation Enhancements
	3.2.17. Missing integration tests with the real Cardano environment risks unexpected issues during deployment

	4. Conclusion
	5. Appendix
	5.1. Vulnerability types
	5.1.1. Other redeemer
	5.1.2. Other token name
	5.1.3. Unbounded Protocol datum
	5.1.4. Arbitrary UTxO datum
	5.1.5. Unbounded protocol value
	5.1.6. Foreign UTxO tokens
	5.1.7. Multiple satisfaction
	5.1.8. Locked Ada
	5.1.9. Locked non Ada values
	5.1.10. Missing UTxO authentication
	5.1.11. Missing incentive
	5.1.12. Bad incentive
	5.1.13. UTxO contention
	5.1.14. Cheap spam
	5.1.15. Insufficient tests
	5.1.16. Incorrect documentation
	5.1.17. Insufficient documentation

	5.2. Terminology and Abbreviations

